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Effects are predicted for electron tunneling through a one-level bridged contact immersed in the electrolyte
solution at ambient conditions in the case of weak electronic interaction of the bridge molecule with the leads
and strong electron-phonon coupling. They are �1� narrow-width ��kBT� Coulomb blockade peaks in the
current/gate voltage dependence, �2� rectification due to the Coulomb repulsion, and �3� a number of peaks in
the differential conductance for the one-level system. Unlike previous work, the number of these peaks can
amount to four that is related with oxidized and reduced states of both ionization and affinity levels of the
bridge molecule.
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Electron tunneling through the objects of nanoscale or
molecular size in solid and liquid junctions continues to at-
tract attention of researchers �see, e.g., review article1 and
references therein�. In the theory of these phenomena the
interest shifts gradually to the consideration of the systems
where the quantum dot or a bridge molecule confined in the
tunneling gap interacts strongly with vibrational modes �see
Refs. 2 and 3, and a number of recent papers4–13�. The physi-
cal mechanism of electron transfer in this case have much in
common with the so-called redox-mediated electron tunnel-
ing in electrochemical systems first considered theoretically
in Ref. 14 and further elaborated in a large number of works
�e.g., reviewed in Ref. 1�. The notion “redox molecule”
means that the bridge molecule has two quasistable states
with the empty electron level �oxidized state� and occupied
one �reduced state�. The transitions between these states oc-
cur due to thermal fluctuations of the vibrational modes of
the polar condensed media. The limit of the weak interaction
of the bridge group with the leads �the weak tunneling limit�
is one of the important particular cases of the electron tun-
neling. The electron transfer here is of sequential character
with intermediate electron localization at the bridge group
due to full relaxation of the vibrational subsystem. The one-
electron process was usually considered which corresponds
to the spinless model or to the limit of infinitely large Cou-
lomb repulsion U between two electrons occupying the same
electron energy level of the bridge group. Even this simple
system demonstrates interesting spectroscopic and transistor-
like properties with the variation in the gate and bias
voltages.15

The bridge molecules which can accept two or more elec-
trons represent more interesting systems. These may be the
molecules with closely located exited one-electron energy
levels or the molecules with small or moderate values of the
Coulomb repulsion energy U.

A simple and effective method of calculation of the tunnel
current in the weak tunneling limit is the use of the rate
equations for the populations of the electron states of the
system. This method was first applied to the case of one-
electron transitions14 and further elaborated in Refs. 4, 6, 8,
and 9. Recently it was extended to many-electron
transitions.16,17 Calculations of the current/bias voltage de-

pendencies were performed for two-electron transfer through
the bridge molecular orbital in the low-temperature limit for
the case of the rather weak coupling with phonons and mod-
erate values of the Coulomb repulsion energy.16,17 These de-
pendencies demonstrate a steplike structure corresponding to
the opening of new channels for the electron transfer with
variation in the bias voltage.

The aim of the present paper is to show that, in the case of
the weak tunneling limit and the strong interaction of the
bridge molecule with the classical vibrational modes consid-
ered at the room temperatures �kBT�0.025 eV, where kB is
the Boltzmann constant and T is the temperature�, a number
of effects take place: �1� the clear-cut Coulomb blockade
peaks with the width of the order of kBT in the tunnel
current/gate voltage dependence; �2� a rectification effect in
the current/bias voltage curve which depends on the value of
the effective Coulomb repulsion energy; �3� in contrast to
other works, there are up to four peaks in the differential
conductance related with the oxidized and reduced states of
both ionization and affinity levels of the bridge molecule.

The Hamiltonian of the system has a standard form:

H = Hel + 1
2�

k

��k�pk
2 + qk

2� , �1�

where Hel is the effective electronic Hamiltonian:

Hel = �
m�

�mcm�
+ cm� + �

�

��b�qk�n� + 1
2Un�n−��

+ �
m�

�Vmc�
+cm� + Vm

� cm�
+ c�� , �2�

the subscript m in the right-hand side �rhs� of Eq. �2� runs
values k or p, �k and �p are the electronic energies of the lead
quasiparticle states �k	 and � p	, respectively, � is the spin
projection, and cm�

+ ,cm� are the creation and annihilation op-
erators for these states. �b�qk� and n�=c�

+c� are the energy
and occupation number operators of the valence orbital
�b	 of the bridge molecule. The third term in the rhs of Eq.
�2� describes the coupling between the electronic states of
the leads and the bridge molecule with Vm as the coupling
constants. The second term in the rhs of Eq. �1� is the Hamil-
tonian of the phonon subsystem where pk and qk are the
dimensionless momenta and coordinates of the solvent
modes which will be considered in the classical limit in what
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follows. �k are the effective frequencies corresponding to the
normal modes qk. Then the electronic energy of the valence
orbital has the form

�b�qk� = �b − �
k

�kqk. �3�

Here �b is the bare “ionization” electronic energy level �b of
the bridge molecule counted from the Fermi level of the left
lead in the case when the electron-phonon interaction is ab-
sent and �k are the coupling constants describing the inter-
action of the valence orbital of the bridge molecule with the
polarization of the condensed medium.

We consider a weak tunneling limit when �, kBTK	kBT
	
 so that the rate equation method can be used.8 Here �
=�L+�R is the total coupling strength of the valence level of
the redox molecule with the left and right leads while TK is
the Kondo temperature, 
=0.5�k�k

2 /��k. The redox mol-
ecule can have three charge states: uncharged �0�, singly
charged �1�, and doubly charged �2�. The probabilities for
these states are denoted as P0, P1= P�+ P−�, and P2, where
P� is the probability for the case when the valence level is
occupied by single electron having spin projection �, P�

= P−�, and P0+ P1+ P2=1. The rate equations have the form

dP0/dt = − 2k01P0 + k10P1, �4�
dP�/dt = k01P0 − k10P� − k12P� + k21P2, �5�

dP2/dt = − 2k21P2 + k12P1, �6�

where kij =kij
L +kij

R are the rate constants for the transitions
between the charge states i and j, �i and j=0, 1, 2�, which are
the sum of the contributions from the tunneling to or from
the left and right leads. It should be noted that the probability
of the simultaneous two-electron transition is negligibly
small in the weak tunneling limit because it is proportional to
the second order of � and, moreover, is characterized by the
large value of the Frank-Condon barrier which is four times
that for one-electron transfer. Using Eqs. �4�–�6�, one obtains
for the steady-state probabilities and the tunnel current j

P0 = k10k21/Z, P1 = 2k01k21/Z, P2 = k01k12/Z, P� = P1/2, �7�

j = 2e�k21�k01
L k10

R − k10
L k01

R � + k01�k12
L k21

R − k21
L k12

R ��/Z , �8�

where Z=k10k21+k01�k12+2k21�. If one neglects P2 �i.e., in
the infinite U limit�, Eqs. �4�–�8� turn to the corresponding
equations of Ref. 6.

The rate constants are calculated using the Fermi golden
rule and, for the classical phonon modes, can be written in
the form �see, e.g., Ref. 18�

kij
� = k�
 d�

2kBT
f����exp�− �
 − �Fji

� − � + �F
��2/4
kBT� , �9�

for j� i and

kij
� = kji

� exp�− �Fij
�/kBT� , �10�

for j i. Equation �9� represents the multiphonon transition
probability for electron transfer from an energy level � in the
metal to the electron energy level of the bridge molecule in
the high-temperature limit for the phonons averaged over the
electron energy spectrum of the leads. The exponential in the

rhs of Eq. �9� is averaged �over phonon states� Franck–
Condon factor in the high-temperature limit. Equation �9�
represents an extension of known equations for multiphonon
transitions in the bulk of the medium between two localized
electron states19 to the electron transfer between the metal
and localized electron state.18 Here �=L or R, f���� are the
Fermi functions of the left and right leads having the Fermi
energies �F

�, the constants k� are proportional to �� and the
detailed balance principle was used in obtaining Eq. �10�,
�F10

L =e���+�V�−kBT ln�2� and �F10
R =�F10

L −eV.20 �=�0
−� is the gate voltage, where � is the potential of the left
lead and �0 is the equilibrium potential of the left lead for the
process of transfer of the first electron �i.e., when �=�0 and
V=0, the process of the transfer of the first electron to or
from the redox molecule is in equilibrium at the left lead so
that 2k01

L =k10
L �. The subsequent discussion is limited by the

symmetric �with respect to the electron coupling with the
leads� tunnel contacts immersed into a polar electrolyte so-
lution or ionic liquid. The presence of the dissolved ions
results in screening of the electric potential within the tunnel
gap. � and � quantify the effect of the gate voltage and the
bias voltage V on the position of the electron energy level of
the bridge molecule due to the screening.20 eV is defined as
the difference between the electrochemical potentials of the
left and right leads. Since the gate voltage was defined with
respect to the left lead, the variation in the bias voltage at
fixed gate voltage is performed by the variation in the poten-
tial of the right lead. This is the reason of possible asymme-
try in these systems. �F21

L =�F10
L −Ueff and �F21

R =�F21
L −eV

where an effective quantity Ueff=U−2
 appears7 because the
transfer of the second electron is accompanied by the full
relaxation of the vibrational subsystem in the weak tunneling
limit. The position of the bare ionization electronic energy
level �b of the bridge is given now by �b=−e���+�V�
+kBT ln�2�. The position of the “affinity” level is equal to
�b+Ueff. It should be noted that Ueff can be negative �see,
e.g., Ref. 21 and references therein�. However, only the case
Ueff�0 is mainly considered in what follows. It should be
emphasized that even for symmetric contacts � is not neces-
sarily equal to 0.5. For example in the case of the full screen-
ing �=0. It is clear that for �1 /2 the shift of the position
of the electron energy �b with respect to the Fermi levels of
the left and right leads with the change of the sign of the bias
voltage will be different.

The tunnel current can also be calculated using the well-
known expression22

j =
2e�L�R

��



−�

�

�fL��� − fR����A���d� , �11�

where A���=��A����, in which A���� is the spectral function
at the valence level for the electron having spin projection �.
For the spinless model or in the infinite U limit, the spectral
function A��� is the linear combination of the spectral func-
tions A0��� and A1��� �see Eq. �20� of Ref. 12� in the weak
tunneling limit where A0��� and A1��� are the spectral func-
tions for the empty or singly occupied bridge molecule, re-
spectively. For finite values of U, two more spectral func-
tions A0a��� and A2��� should be taken into account. Here
A0a��� and A2��� are the spectral functions of the empty and
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occupied levels corresponding to the electron having spin
projection �, in the case when the electron having spin pro-
jection −� already occupies the valence level of the redox
molecule. In other words, in the case under consideration,
the spectral functions A0��� and A1��� describe the oxidized
and reduced ionization levels, whereas the spectral functions
A0a��� and A2��� describe the oxidized and reduced affinity
levels. As a result,

A���� = P0A0��� + P�A1��� + P−�A0a��� + P2A2��� . �12�

In the weak tunneling limit, the probabilities entering the rhs
of Eq. �12� are given by Eq. �7�. The spectral functions
A0���, A1���, A0a���, and A2��� are independent of �, and
depend only on the electron-phonon and the electron-
electron interactions. The spectral function A0��� was ob-
tained, e.g., in Ref. 23. Other spectral functions also can be
obtained using the method of Ref 23, which takes into ac-
count the electron-phonon interaction leading to their broad-
ening. These functions when normalized to unity are equal to
A�= �4�
kBT�−1/2 exp�−��−E��
 ,�b ,Ueff��2 /4
kBT�, where
E0=
+�b, E1=−
+�b, E0a=
+�b+Ueff, and E2=−
+�b
+Ueff. The physical meaning of the electron energy levels E�

is as follows. The positions of the empty ionization and af-
finity levels are shifted to Eo and E0a due to the electron-
phonon interaction. After appropriate thermal fluctuation of
the vibrational subsystem accompanied by the thermal fluc-
tuation of the position of the ionization �or affinity� level, the
electron is transferred to the ionization level �or affinity
level, in the case when the ionization level is filled� followed
by the full vibrational relaxation. As a result, the positions of
the filled ionization or filled affinity levels are shifted to E1
or E2, respectively.

In the large 
 limit �
� �eV�, �e��, �Ueff�� and in the case
of symmetric coupling �kL=kR=k0�, a simple expression for
the tunnel current can be obtained:

j = 2�ek021/2 exp�− 
/4kBT�

�
sh�eV/4kBT��2 + exp��2e�V − Ueff�/2kBT��
8ch�e�V/2kBT� + exp��3e�V − 2Ueff�/2kBT�

, �13�

where �V=��+ ��−1 /2�V is the effective gate voltage. In
this limit P0=1 /Zp, P1=exp�e�V /kBT� /Zp, and P2
=0.25 exp��2e�V−Ueff� /kBT� /Zp, where Zp=1
+exp�e�V /kBT�+0.25 exp��2e�V−Ueff� /kBT�. In the oppo-
site case, when �eV��
, �e��, �Ueff�, the probabilities goes to
P0= P2=1 /4, P1=1 /2, and the tunnel current tends to
ek0��
 /kBT�1/2.

It can be shown using Eq. �13� that, for Ueff
�2kBT ln�3��0.055 eV and at fixed bias voltage, two Cou-
lomb blockade peaks7,24 exist in the current/gate voltage
curve. They are located at �V�0 and �V�Ueff+2kBT ln�2�
�see Fig. 1�. The minimum of j��V� curve is at �V�Ueff /2
+kBT ln�2�. At Ueff0.055 eV both peaks which have ap-
proximately the same height merge into one and, at negative
values of Ueff, lie at �V�Ueff /2+kBT ln�2�. The j��V� curve
in the region of the left peak coincides with that in the infi-
nite U limit. The Coulomb blockade peaks shown in Fig. 1
are more pronounced than those obtained in Ref. 7 because
the width W of these peaks at their half maximums is not

equal �Ueff �as in Ref. 7� or �� �as for the left peak in the
strong tunneling limit of the spinless model12� but has an
order of kBT. More precisely, it follows from Eq. �13� that
the width of both peaks is equal to approximately
4kBT ln�2+31/2��0.13 eV, and is independent of 
 and V in
the large 
 limit. Since �b=−e�V−eV /2+kBT ln�2� in terms
of the effective gate voltage, the first and the second Cou-
lomb blockade peaks are located at the values of �V which
correspond to the situations when the average positions of
the thermally fluctuating ionization or affinity levels �but not
their fixed positions as in the absence of the electron-phonon
coupling� hit approximately the center of the energy window
�the energy gap between the Fermi levels of the left and right
leads�.

If �Ueff� and �eV��kBT, �Ueff�	 �1–2���eV� then it follows
from Eq. �13� that when � is not equal to 1/2, �j�
−�V��� / j��V���2 exp�Ueff /2kBT�. This relationship shows
that, at finite U and large 
, the effect of rectification due to
the electron-electron interaction takes place �see Fig. 2�.
When Ueff0 �Ueff�0�, the current is suppressed �en-
hanced� in the region V0. If �=1 /2, rectification disap-
pears. An important characteristic of the tunnel contact is the
differential conductance g=�j /�V as a function of the bias
voltage. When the electron-phonon interaction is absent, the
differential conductance can have two peaks at the points V
=�b /e and ��b+U� /e in the T�TK regime �see, e.g., Ref.
25�. In the case of the strong electron-phonon coupling, we
predict a different effect: the differential conductance can
have up to four peaks corresponding to the positions Eo, E1,
E0a, and E2 of the maxima of the spectral functions Ao, A1,
A0a, and A2, respectively. Indeed, if eV�kBT, one can per-

FIG. 1. Dependence of the tunneling current on the effective
gate voltage. The current j is normalized to j��0� where j��0� is the
tunneling current for infinitely large Coulomb repulsion energy at
zero value of the effective gate voltage Er=0.5 eV, V=0.1 V, and
kBT=0.025 eV. 1: U=�; 2: Ueff=0.2 eV; 3: Ueff=0.5 eV.

FIG. 2. Dependence of the tunneling current on the bias voltage.
The current is normalized to 4ek0. 
=0.5 eV, �=0, kBT
=0.025 eV, and �=0.2. 1: U=�; 2: Ueff=−0.2 eV; 3: Ueff=0.
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form integration in Eq. �11� from −eV to zero. Furthermore,
if one of the probabilities P� varies slowly with the variation
in the bias voltage, then the corresponding contribution to g
is proportional to the corresponding function A��−eV�.

Calculations show that, depending on the values of the
parameters of the system, the function g�V� can have from
two to four peaks. Figures 3�a� and 3�b� present the curves of
the differential conductance for different values of Ueff, �,
and �. Figure 3�a� with �=0.5 corresponds to the weak
screening of the external field by the solution.20 It can be
shown that the differential conductance is an even function
of the bias voltage in this case. As follows from expressions
presented above, P0= P1�1 /2 and P2�0 at �=0, �=0.5,
Ueff�kBT, and small �V�. With the increase in �V�, P0 and P1
vary slowly from 1/2 to 1/4 and to 1/2 again, respectively.
Therefore, the differential conductance g�V� has three
maxima at ��eV�1= ��eV�0�=2
 and �eV�0a=−2�
+Ueff�
both for Ueff=0.5 and 0.8 eV. However, for Ueff=0.2 eV, the
maximum at ��eV�0a merges with that at ��eV�0. In con-
trast, P2 varies rapidly with V in the small �V� region so that
the position of the right maximum of the g�V� curves for
Ueff=0.5 and 0.8 eV does not coincide with �eV�2=2�

−Ueff� but is determined by the symmetry property of the
function g�V� and equals ���eV�0a�.

The case of the intermediate screening ��=0.2� is pre-
sented in Fig. 3�b� for ��=−0.2. Since here P1� P2�0 and
P0�1=const at small �V� in the negative bias region, g�V�
has a maximum at ��eV�0= ���−
� / �1−��. If P1 would be
constant in the negative bias region, the maximum corre-
sponding to A0a��� might lie at ��eV�0a=−�
+Ueff

−��� / �1−��. For Ueff�0.5 and �=0.2, one has ��eV�0a�
�1.25 eV�
�0.5 eV. In this large bias voltage region
P1�const=1 /2 so that a separate maximum at ��eV�0a of
the g�V� curve really exists for Ueff=0.5 and 0.8 eV �see Fig.
3�b�� but it merges again with that at ��eV�0 for Ueff

=0.2 eV.
At ��=−0.2 and �=0.2, the probabilities P1 and P2 vary

rapidly with V in the interval where the maxima at ��eV�1

= �
+��� / �1−�� and ��eV�2= �
+��−Ueff� / �1−��, corre-
sponding to A1��� and A2���, respectively, may exist. There-
fore, the calculated maximum of the g�V� curves related with
the reduced ionization level is shifted strongly to right from
�eV�1 whereas the maximum related with the spectral func-
tion A2��� disappears at all.

In summary, we have investigated the electric character-
istics of the tunnel contact with a redox molecule �which can
be in the oxidized and reduced states� in the tunneling gap at
room temperature, taking into account the Coulomb interac-
tion between the electrons occupying the same energy level
of the bridge molecule and electron-phonon interaction. �1�
We have shown that even simple system with one redox
level, in the limit of strong electron-phonon interaction, can
have two clear-cut Coulomb blockade peaks in the current/
gate voltage dependence. Unlike other works, these peaks are
rather narrow �the width of the order of kBT� due to the
electron-phonon interaction. �2� Another effect related with
Coulomb interaction between the electrons is the rectification
of the current in the current/bias voltage dependences. This
effect in the case of symmetric electron coupling with the
leads is related exclusively with the nonsymmetric position
of the electron energy level of the bridge molecule at fixed
gate voltage due to the screening effect under the variation in
the sign of the bias voltage ��1 /2�. �3� Unlike the works
where the electron-phonon interaction was not taken into ac-
count, the conductivity of one-level system as a function of
the bias voltage can have up to four peaks related with the
oxidized and reduced states of the ionization and affinity
levels of the bridge molecule. The mechanism of the transfer
of each of two electrons in each two-electron step is related
with the fluctuations in the phonon subsystem to the reso-
nance configuration for electron transition followed by full
vibrational relaxation.

1 M. Galperin et al., J. Phys.: Condens. Matter 19, 103201 �2007�.
2 L. I. Glazman, and R. I. Shehkter, Zh. Eksp. Teor. Fiz. 94, 292

�1988� �Sov. Phys. JETP 67, 163 �1988��.
3 N. S. Wingreen et al., Phys. Rev. B 40, 11834 �1989�.
4 D. Boese and H. Schoeller, Europhys. Lett. 54, 668 �2001�.
5 K. D. McCarthy et al., Phys. Rev. B 67, 245415 �2003�.
6 S. Braig and K. Flensberg, Phys. Rev. B 68, 205324 �2003�.
7 P. S. Cornaglia et al., Phys. Rev. Lett. 93, 147201 �2004�.
8 A. Mitra et al., Phys. Rev. B 69, 245302 �2004�.
9 J. Koch and F. von Oppen, Phys. Rev. Lett. 94, 206804 �2005�.

10 M. Galperin et al., Phys. Rev. B 73, 045314 �2006�.
11 J. Koch et al., Phys. Rev. B 74, 205438 �2006�.
12 I. G. Medvedev, Phys. Rev. B 76, 125312 �2007�.
13 D. A. Ryndyk and G. Cuniberti, Phys. Rev. B 76, 155430

�2007�.

14 A. M. Kuznetsov et al., Surf. Sci. 275, 52 �1992�.
15 C. Joachim and M. A. Ratner, Proc. Natl. Acad. Sci. U.S.A. 102,

8801 �2005�.
16 E. G. Petrov et al., Phys. Rev. B 73, 045408 �2006�.
17 E. G. Petrov, Chem. Phys. 326, 151 �2006�.
18 R. R. Dogonadze and A. M. Kuznetsov, Prog. Surf. Sci. 6, 1

�1975�.
19 R. Kubo and Y. Toyozawa, Prog. Theor. Phys. 13, 160 �1955�.
20 A. M. Kuznetsov et al., J. Chem. Phys. 127, 104708 �2007�.
21 J. Koch et al., Phys. Rev. B 75, 195402 �2007�.
22 Y. Meir and N. S. Wingreen, Phys. Rev. Lett. 68, 2512 �1992�.
23 C. D. Mahan, Many Particle Physics �Plenum, New York, 1990�.
24 T. K. Ng and P. A. Lee, Phys. Rev. Lett. 61, 1768 �1988�.
25 A. L. Yeyati et al., Phys. Rev. Lett. 71, 2991 �1993�.
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FIG. 3. The differential conductions normalized to 4e2k0 / �2
�
as a function of the bias voltage. 
=0.5 eV and kBT=0.025 eV.
Solid lines: 1–Ueff=0.5 eV; 2–Ueff=0.8 eV. Dashed lines: Ueff

=0.2 eV. �a� �=0, �=0.5; �b� ��=−0.2 V, �=0.2.
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